Convolve - определение. Что такое Convolve
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Convolve - определение

BINARY MATHEMATICAL OPERATION ON FUNCTIONS
Convolution (music); Convolve; Convolution kernel; Convolution operator; Convolution operation; Linear convolution; Nonlinear convolution; Convolution of functions; Faltung; Convolved; Convolution integral; Continuous-time convolution; Carson's integral; Superposition integral; Convolution (mathematics); Discrete convolution; Convolutions; Cross Convolution; Auto-convolution; Self convolution
  • Discrete 2D Convolution Animation
  • 452x452px
  • 475px
  • 475px
  • [[Gaussian blur]] can be used to obtain a smooth grayscale digital image of a [[halftone]] print.
Найдено результатов: 9
Convolve         
·vt To roll or wind together; to roll or twist one part on another.
convolve         
[k?n'v?lv]
¦ verb rare roll or coil together.
Origin
C16 (in the sense 'enclose in folds'): from L. convolvere 'roll together'.
Convolved         
·Impf & ·p.p. of Convolve.
convolution         
¦ noun
1. a coil or twist.
a sinuous fold in the surface of the brain.
the state of being or process of becoming coiled or twisted.
2. a complex thing.
Derivatives
convolutional adjective
Origin
C16: from med. L. convolutio(n-), from convolvere (see convolve).
convolution         
(convolutions)
1.
Convolutions are curves on an object or design that has a lot of curves. (LITERARY)
N-COUNT: usu pl
2.
You can use convolutions to refer to a situation that is very complicated. (LITERARY)
...the thorny convolutions of love.
N-VAR: oft N of n
convolution         
n.
1.
Rolling together.
2.
Coil, fold, bight.
Convolution         
In mathematics (in particular, functional analysis), convolution is a mathematical operation on two functions ( and ) that produces a third function (f*g) that expresses how the shape of one is modified by the other. The term convolution refers to both the result function and to the process of computing it.
Convolution         
·noun The act of rolling anything upon itself, or one thing upon another; a winding motion.
II. Convolution ·noun An irregular, tortuous folding of an organ or part; as, the convolutions of the intestines; the cerebral convolutions. ·see Brain.
III. Convolution ·noun The state of being rolled upon itself, or rolled or doubled together; a tortuous or sinuous winding or fold, as of something rolled or folded upon itself.
Convolving      
·p.pr. & ·vb.n. of Convolve.

Википедия

Convolution

In mathematics (in particular, functional analysis), convolution is a mathematical operation on two functions (f and g) that produces a third function ( f g {\displaystyle f*g} ) that expresses how the shape of one is modified by the other. The term convolution refers to both the result function and to the process of computing it. It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The choice of which function is reflected and shifted before the integral does not change the integral result (see commutativity). The integral is evaluated for all values of shift, producing the convolution function.

Some features of convolution are similar to cross-correlation: for real-valued functions, of a continuous or discrete variable, convolution ( f g {\displaystyle f*g} ) differs from cross-correlation ( f g {\displaystyle f\star g} ) only in that either f(x) or g(x) is reflected about the y-axis in convolution; thus it is a cross-correlation of g(−x) and f(x), or f(−x) and g(x). For complex-valued functions, the cross-correlation operator is the adjoint of the convolution operator.

Convolution has applications that include probability, statistics, acoustics, spectroscopy, signal processing and image processing, geophysics, engineering, physics, computer vision and differential equations.

The convolution can be defined for functions on Euclidean space and other groups (as algebraic structures). For example, periodic functions, such as the discrete-time Fourier transform, can be defined on a circle and convolved by periodic convolution. (See row 18 at DTFT § Properties.) A discrete convolution can be defined for functions on the set of integers.

Generalizations of convolution have applications in the field of numerical analysis and numerical linear algebra, and in the design and implementation of finite impulse response filters in signal processing.

Computing the inverse of the convolution operation is known as deconvolution.